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A simple approximate formula is proposed for calculating the mass-transfer coeffi- 
cient for a moving reactive particle, the surface of which is the site of a hetero- 
geneous chemical reaction with arbitrary kinetics. 

The most important mass-transfer characteristic in a chemically active disperse phase 
is the integral flow of the dispersion medium to a particle (drop) of the disperse phase 
averaged over the surface of the particle -- the Sherwood number [1-12]. Here, it is assumed 
that the particle is reacting with the homogeneous phase. It turns out to be considerably 
simpler to calculate the integral flow of the reactant to the particle surface in limiting 
cases of purely diffusional and kinetic surface chemical reactions -- when the concentration 
on the surface assumes a constant value -- than in the general case of arbitrary kinetics. 
Such calculations have been performed for a whole series of special cases of hydrodynamic 
flow about a particle (e~g., [1-3, 13, 14]). 

Proposed below is an approximate formula for calculating the mean value of the Sherwood 
number (integral flow) on the surface of a reacting particle in the case of arbitrary kine- 
tics of the heterogeneous chemical reaction from the known value of integral flow correspon- 
ding to a diffusional reaction regime. 

In an isothermal process, the distribution of concentration C in the flow of liquid 
(or gas) is determined by solving the equation of steady-state convective diffusion, with the 
boundary condition of constant concentration away from the particle and the following 
boundary condition on the active surface 

(vv) c = Pe - iAc ;  c l ~  .--+ 1; (1 )  

[ 0_~._ __ k[ (c)] = O, ~--k'aD-~C71 ([ (0)= 0). 
k r J F 

The e q u a t i o n  and  b o u n d a r y  c o n d i t i o n s  (1 )  a r e  w r i t t e n  i n  d i m e n s i o n l e s s  f o r m .  I t  i s  
a s s u m e d  t h a t  t h e  d i s t r i b u t i o n  o f  t h e  v e l o c i t y  o f  t h e  l i q u i d  v i s  known f r o m  t h e  s o l u t i o n  o f  
the corresponding hydrodynamic problem of flow about a particle. 

Many works (see [1-15], for example) previously examined the solution of problem (i) 
for certain specific types of surface-reaction kinetics, defined by the function f (in the 
general case or for the diffusional regime), or for particles of different shapes with dif- 
ferent flow fields. However, the analysis of problem (i) turned out to be fairly complex 

even in the simplest limiting cases of large and small Peclet numbers [1-15], so that it is 
more expedient if approximate methods are used. 

Certain methods of obtaining an approximate solution of problem (i) were proposed in 
[i]. The applicability of these methods was discussed in [1-4] in regard to specific exam- 
ples. It was shown [i, 3] that the method of local equal access to the surface gives satis- 
factory results in certain cases. This method makes it possible to approximately determine 
the concentration on the particle surface by solving a certain transcendental equation. 

In problems of the type being discussed, the characteristics that are usually of the 
most interest are the integral mass-transfer characteristics of mean Sherwood number Sh or 
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dimensionless total diffusional flow I to the particle surface: 

Sh = I S  -i, l -  �9 -~n dF, S =  dF. (2) 

F F 

Here S i s  t he  t o t a l  ( d i m e n s i o n l e s s )  s u r f a c e  a r e a  of  the  p a r t i c l e  F. 

The ( l o c a l )  e q u a l - s u r f a c e - a c c e s s  method [1] does  n o t  o f f e r  a c o n v e n i e n t  a l g o r i t h m  f o r  
c a l c u l a t i n g  t he  mean Sherwood number (or  i n t e g r a l  f low)  (2 ) .  We t h e r e f o r e  need s imp le  f o r -  
mulas which w i l l  make i t  p o s s i b l e  to  a p p r o x i m a t e l y  d e t e r m i n e  the  i n t e g r a l  c h a r a c t e r i s t i c s  
(2) w i t h o u t  r e s o r t  t o  t h i s  a p p r o a c h .  

I t  i s  p roposed  h e r e  t h a t ,  as  such an a p p r o x i m a t e  method,  the  mean Sherwood number be 
c a l c u l a t e d  from the  f o l l o w i n g  a l g e b r a i c  e q u a t i o n :  

S h = k [  1 - - S h d  (3) 

where Shd i s  the  mean Sherwood number f o r  a p a r t i c l e  r e a c t i n g  i n  t he  d i f f u s i o n a l  r eg ime  
( i . e . ,  under  t he  c o n d i t i o n  of  comple t e  a b s o r p t i o n  o f  the  d i s p e r s i o n  medium on i t s  s u r f a c e :  
clF=0). Further, it is assumed that Eq. (3) has a unique positive solution. 

The origin of Eq. (3) can be explained on the basis of the following simple considera- 
tions. It follows from determination of the mean Sherwood number that 

Sh = kf( < c~ > ), (~) 
where <Cs> i s  a c e r t a i n  mean v a l u e  o f  s u r f a c e  c o n c e n t r a t i o n .  On t he  o t h e r  hand,  t h e  r e l a -  
t i o n s h i p  be tween  the  numbers Sh and Shd and t he  mean s u r f a c e  c o n c e n t r a t i o n  <Cs> has  t h e  
f o l l o w i n g  o b v i o u s  p h y s i c a l  p r o p e r t i e s :  t he  r a t i o  Sh/Shd m o n o t o n i c a l l y  d e c r e a s e s  w i t h  an 
i n c r e a s e  in  <Cs>; Sh/Shd = 1 when <Cs> = 0 ( d i f f u s i o n a l  r e g i m e ) ;  Sh/Shd = 0 when <Cs> = 1 ( k i n e -  
tic regime). The simplest interpolational relation satisfying these conditions has the form 

Sh = (1 - -  < e, > ) Sh d. (5) 

E x c l u d i n g  t he  unknown <Cs> f rom Eqs. (4) and (5 ) ,  we o b t a i n  Eq. (3 ) .  

I t  shou ld  be n o t e d  t h a t ,  in  the  s p e c i a l  c a s e  o f  a f i r s t - o r d e r  r e a c t i o n ,  Eq. (3) r e d u c e s  
to the form 

1 1 1 

Sh -- k + S b d : '  (6)  

i.e., it yields the rule of addition of the kinetic and diffusion resistances. 

We checked the applicability of Eq. (4) in approximately determining the mean Sherwood 
number for several special characteristic cases for which exact or asymptotic solutions are 
available. Let us examine some of these cases. 

i. With small Peclet numbers Pe ~i and small Reynolds numbers Re ~i, the trinomial 
expression obtained by the method of combiningasymptotic expansions in small Pecl~t num- 
bers to find the mean Sherwood number in the case of a diffusion reaction on the surface 
of a solid spherical particle has the form [13] 

1 1 
Sh d = 1 + Pe + Pe z In Pc. 

2 2 

S u b s t i t u t i n g  t h i s  e x p r e s s i o n  i n  Eq. (3) and expand ing  i n t o  a s e r i e s  in  sma l l  Pe,  we o b t a i n  

1 qq*(Pe § Pe21nPe), (7) S h ~ q +  

where q is the root of the equation 

kf(1 - -q )  -- q = 0; q* = k~(1 + k%) -i, % = [Of/Oc]c=,iq. 

A compar i son  of  (7) w i t h  t he  fo rmula  from [ 8 ] ,  o b t a i n e d  from a n a l y t i c  s o l u t i o n  o f  
p rob lem (1) by the  method of  combin ing  a s y m p t o t i c  e x p a n s i o n s ,  shows t h a t  Eq. (3) g i v e s  the  
c o r r e c t  r e s u l t  f o r  a t  l e a s t  t he  f i r s t  t h r e e  t e rms  of  t h e  a s y m p t o t i c  e x p a n s i o n  of  Sherwood 
numbers in  sma l l  Pecl@t numbers f o r  any v a l u e s  of  t he  r a t e  c o n s t a n t  k and an a r b i t r a r y  form 
of  t he  f u n c t i o n  f [6,  8,  15 ] .  
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Fig. i. Comparison of exact [9-12] (a) and approximate (calculated 
in accordance with Eq. (3)) (b) values of the Sherwood number for a 
sample second-order reaction. 

Fig. 2. Dependence of mean Sherwood number on reaction-rate con- 
stant: i, 2, 3 correspond to surface reactions of orders 1/2, i, 
and 2. 

2. Given an arbitrary function f, Eq. (3) gives the correct asymptotic result in the 
limiting cases of large and small reaction-rate constants (k+0 and k+~) for arbitrary 
Pecl6t numbers (see [8-11], for example). 

3. In approximating the diffusion boundary layer for finite values of the rate constant 
k with a power law for the reaction f(c) =c n (n= 1/2, i, 2), we checked the applicability 
of Eq. (3) by comparing its root Sh with exact results obtained for the Sherwood number by 
numerical solution of the corresponding integral equations with Stokes flow about a sphere 
[i0, ii], drop (bubble) [12], and circular cylinder [9]. In these cases, the particle 
radius was chosen for the characteristic length scale a and the flow velocity away from the 
particle U for the characteristic flow velocity (for the drop and bubble, the characteristic 
velocity was the quantity U(I+B) -I, where B is the ratio of the viscosities of the drop 
and surrounding liquid; ~=0 corresponds to a gas bubble). Figure 1 shows the results of 
the comparison of the exact [9-12] and approximate (3) Sherwood number values using the 
example of a second-order reaction. The maximum deviation of the root of Eq. (3) from the 
mean Sherwood number in [9-12] is seen at k/Sh d~l-10 and does not exceed 6%. 

4o To check the applicability of Eq. (3) for finite Pecl~t numbers, we used the numeri- 
cal solutions obtained in [3] for the problem of mass transfer of a spherical particle in 
the case of a heterogeneous first-order chemical reaction on its surface (f(c) =c). It 
follows from the table on page 130 in [3] that in this case Eq. (4) ensures an accuracy to 
within 5%. 

5. Equation (3) can also be used to calculate the convective heat and mass transfer 
of nonspherical particles. To this end, we first introduce the dimensionless form factor 

in the following manner. As before, let a be a characteristic dimension of the particle 
(such as the radius of an equivalent sphere). Keeping the quantity g as a length scale 
while we determine the Sherwood number, we introduce the new scale a~ in determining the 
dimensionless rate constant of the chemical reaction, having needed to satisfy Eq. (3) for a 
particle at rest, i.e. (the corresponding quantities have been indicated with a zero sub- 
script) 

Sho=kf 1 . s ~ a  " ( 8 )  

T a k i n g  Eq. (8 )  i n t o  a c c o u n t ,  we r e d u c e  Eq. (3)  t o  t h e  f o r m  

E q u a t i o n  (9)  a l l o w s  us  t o  e a s i l y  c a l c u l a t e  t h e  S h e r w o o d  number  f o r  a m o v i n g  r e a c t i v e  
p a r t i c l e  f r o m  known S h e r w o o d  n u m b e r s  f o r  a p a r t i c l e  r e a c t i n g  i n  t h e  d i f f u s i o n  r e g i m e  (Shd)  , 
f o r  a s t a t i o n a r y  p a r t i c l e  w i t h  a s s i g n e d  k i n e t i c s  ( S h o ) ,  and  f o r  a s t a t i o n a r y  p a r t i c l e  i n  
t h e  d i f f u s i o n  r e g i m e  ( S h o d ) .  
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In particular, we obtain the following from (9) for a first-order reaction 

1 1 1 1 __+ (io) 
Sh Sho Shd S~d 

To check tile above procedure for calculating the convective mass transfer of particles 
of arbitrary form, let us examine an analytical solution of the problem in the case of a 
first-order surface reaction at small Pecl6t numbers obtained in [7] by the method of com- 
bining asymptotic expansions: 

1 S h a P e +  1 Sh~FPe 21npe+O(pez) .  S h = S h 0 +  2 ~ ( l l )  

Here F i s  t he  d i m e n s i o n l e s s  d r a g  a s s o c i a t e d  w i t h  t he  p a r t i c l e  a t  a g i v e n  o r i e n t a t i o n  in  the  
flow (it is equal to the dimensional drag divided by the Stokes drag associated with a sphere 
of radius a, i.e., 6~Ug) 

Using Eq. (ii), we have the following, accurate to within terms of the order Pe 2 

1 1 1 Pe 1 F P e ~ l n P e =  1 1 1 
Sh : Sh0 2 - -  T S~0 + Sb-~ --Sh0----d ' 

which a g r e e s  w i t h  (10 ) .  

E q u a t i o n  (4) i s  r e l a t i v e l y  s imp le  i n  form and a l l o w s  us to  d e t e r m i n e  t he  Sherwood num- 
be r  from a s s i g n e d  r e a c t i o n  k i n e t i c s  f .  E q u a t i o n  (3) i n c l u d e s  t h e  a u x i l i a r y  Sherwood number 
Shd, which has  a l r e a d y  been  c a l c u l a t e d  by n u m e r i c a l  or  a n a l y t i c a l  methods  f o r  a l a r g e  num- 
be r  o f  p rob lems  c o n c e r n i n g  t h e  h e a t  and mass t r a n s f e r  of  i s o l a t e d  b o d i e s  ( s ee  [ 1 - 3 ] ,  f o r  
example ) .  E q u a t i o n  (3) can be used  to  c a l c u l a t e  t he  h e a t  and mass t r a n s f e r  of  b o t h  s o l i d  
and l i q u i d  p a r t i c l e s  e n v e l o p e d  by a l i q u i d  f low of  a r b i t r a r y  s t r u c t u r e  ( e i t h e r  n o n v i s c o u s  
or  v i s c o u s ,  p a r t i c u l a r l y  N e w t o n i a n ) .  When t he  v a l u e  o f  Sh d i s  unknown, i t  can be d e t e r m i n e d  
by s o l v i n g  t h e  s i m p l e r  c o r r e s p o n d i n g  p rob lem (1) w i t h  a z e r o  boundary  c o n d i t i o n  on t he  p a r -  
t i c l e  s u r f a c e :  c l F =  0. A v a l u e  o f  Shd o b t a i n e d  e x p e r i m e n t a l l y  can a l s o  be used in  Eq. 
(3). 

If the principal terms of the asymptotic expansions for the auxiliary problem at small 
and large Pecl6t numbers Shd(0) (see [6-8, 13], for example) and Shd(~) [1-3] are known, 
then, in view of the properties Shd(0) %1 and Shd(~) %Pel/(n+1) (n=l for liquid particles 
and n = 2 for solid particles), use of the following interpolational formula may be proposed 
for the auxiliary Sherwood number Sh d in Eq. (3)" 

Sh d = Sh d (0) + Sh d (oo). (12) 

As an example of the practical application of Eq. (3), we will use the results from 
[14] for a diffusion flow on the surface of a cylinder and sphere Shd, obtained on the 
assumption of large Reynolds and Pecl6t numbers. Separation of the hydrodynamic boundary 
layer occurs in both cases, the point of separation being approximately given by the same 
value of the angle 8* ~1.83 (105 ~ ) in each instance (the angle e is reckoned from the point 
of inflow). We use Eq. (3) in these cases to obtain the mean Sherwood number in the region 
of intact (unseparated) flow 0 <8 < 

The auxiliary Sherwood number has the form [14] 

Sh d = %~ Re I/2 PO/a, %a = 0.605, %2 = 0.588, (13) 

where ~ = 1 corresponds to the cylinder and a = 2 corresponds to the sphere. 

Substitution of (13) into Eq. (3) with an assigned reaction-rate constant k and surface- 
reaction kinetics f gives us the equation for the Sherwood number Sh. Figure 2 shows the 
dependence of the mean Sherwood number on the parameter k/Sh d with a power relation for the 
surface-reaction rate f(c) =c n. 

The approximate equation (3), for a single concentration component, can be generalized 
to the case of a complex chemical reaction with an arbitrary number of components. 

NOTATION 

c, relative concentration; Cs, surface concentration; C~, concentration at infinity; 
D, diffusion coefficient; U, characteristic flow velocity; a, characteristic dimension of 
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body; F, surface area of body; k', reaction-rate constant; k=k'aD-ICg ~, dimensionless rate 
constant; f = f(c), dependence of rate of chemical reaction on concentration of reactant 
close to surface; Re, Reynolds number; Pe, Pecl~t number; Sh, mean Sherwood number; Shd, 
mean Sherwood number under the condition of complete absorption; Sho, mean Sherwood number 
for a quiescent medium; n, normal to the particle surface F. 
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